HOME > 絆ブログ > 2ページ目

絆ブログ 2ページ目

算数でつまずく「図形」問題の克服法とは!

「合格への絆」12月号の中の記事より一部を紹介します。

算数でつまずく「図形」問題の克服法とは!

少しずつ抽象度が上がってくる小学4年生の算数。なかでも図形単元は「試行錯誤」や「頭の中でイメージすること」が求められ,つまずく子どもが増えると言われています。『AERA with Kids』(朝日新聞出版)秋号「小学4年生 算数の壁」では,図形問題の克服法について紹介しています。
 なぜ小4算数の図形問題は急に難しく感じるのでしょうか。これまで多くの小学生に中学受験指導を行ってきた辻義夫先生は次のように話します。
 「3年生までの算数では実際に数えたり,なるべく具体的に考えたりしながら解いてきたのですが,4年生になると,見通しを立てたり頭の中で試行錯誤したりすることが増えてきます。図形も同じで,ひとつずつ具体的に考えることに加えて『これまで学んだ解き方を頭の中でイメージしながら,別の方法で解く』という学習が増えるため,少し見方を変えた問題が出ると,勘違いやミスが出てしまうのです。」
 「小3で学んだ長さの単位換算は暗記で解いてきた,という子どもは多いと思いますが,4年の面積の単位換算は同じようにはいきません。暗記で何とかしようとすると,5年生の体積の単位換算でさらにつまずいてしまうので,今のうちから『しくみや性質や決まり』など,根本的な理解をしっかりしていくことが大切です。また,頭の中だけで考えるだけでは難しいことも多いので,省略せずにいったん手を動かして書いて確認することも重要ですね。」
 
●克服法(1)面積の単位のしくみを理解しながら換算をする(単元:面積の単位換算)
 面積の単位換算のコツは,とにかく「機械的に覚えない」こと。面積は「1辺×1辺」なので,正方形の1辺の長さがどう変わるかを考えながら,辺の長さや単位の変化に合わせて面積がどう変わるかを見ていきます。イメージが難しければ方眼紙に1辺の長さを入れた正方形を描いて考えると,より具体的に把握できます。
 厄介なのは,普段なじみのない「ha」(ヘクタール)や「a」(アール)があること。「1ha」なら1辺は100メートルの正方形,「1a」は1辺は10メートルの正方形。大きい数の場合は田んぼや畑など,例を使ってイメージを持てるようにしましょう。
 
●克服法(2)色々な方法で長方形の面積を出してみる(単元:長方形や正方形の面積)
 小4の長方形の面積では,凸凹があったり一部に空白があったりして,どのように面積を出していくのか,悩ましい問題が出てきます。このような問題の場合,長方形や正方形を切り分けてそれぞれの面積を計算し,最後に合計をして答えを出す子どもが多くいます。
 しかし,足すだけでなく,全体から部分の面積を引いたり図形を移動させたりしながら色々な解き方ができるよう,考え方を引き出す声かけが大事です。どんな解き方をしても否定せずに試行錯誤したことを認める声かけをしてください。簡単に解く方法を考えたり探したりすることがとても重要です。
 
 小4の算数は,5年6年とさらに難しくなる思考算数の土台作りの時期と言えます。テストの点数だけを見るのではなく,ときには教科書を一緒に見てあげて,どこかでつまずいていないか確認してあげるといいでしょう。
 

県立入試まであと・・

県立残り99日.JPG

県立入試まで残り100日を切りました。
中学3年生は、受験する私立高校を決める面談も終わり、本番が近づいていることを身に染みて感じているのではないでしょうか。

先日、中学3年生は水城高校で全県模試を受験してきました。
服装も、私服ではなく制服で受けて来てもらいました。
教室でいつも受けている模試とは違い、すごく緊張をしたという声がありました。
周りが知らない人だらけの中で受験してきた経験は、必ず本番の受験の時に役に立ちます。
今回の経験でうまくいった点、うまくいかなかった点を見つめ直し、年明けから始まる私立入試に万全の状態で迎えるようにしましょう。

学習塾絆 稲見

なぜ勉強するのか

「合格への絆」11月号の中の記事より一部を紹介します。


なぜ勉強するのか ~ある先輩からのメッセージ~

中学生のほとんどが進学を目指して勉強していると思います。では,なぜ勉強するのでしょうか。義務教育だからでしょうか。それとも,いい高校に入るために勉強しているのでしょうか。それも一つの理由に入っているかもしれません。もしそうだとしたら,中学で教わる音楽,体育など5教科以外の教科は必要ないと思いませんか。私も,ずっとそう思いながら毎日を過ごしていました。しかし,今思うと5教科以外の教科も,最低限の教養を身につけていく上で必要なのです。社会に出れば,上は60代の人から,下は10代の人までいる中に入るのですから,人の会話についていくために今の社会を知ることも必要だし,一般に知られている常識を知らないと,「この人は常識を知らない人間」だと思われ続けるでしょう。だからこそ,どの教科も必要になると思うのです。
 
 では,なぜ高校に入るのでしょうか。あなたならどう答えますか。ほとんどの人が「最低,高校ぐらいは出ておかなければ」とか「みんなが行っているから」など,このような答えが返ってくると思います。しかし,自分の目標を見つけて,それを達成させるために高校に入るのだったら,その人は3年間立派に高校生活を過ごすことができるでしょう。
 
 自分が今まで体験したことの中から言わせてもらうと,苦しいことやつらいことから逃げてばかりいると,その人の人生は,一生逃げてばかりになります。私には,調理師になるという目的がはっきりしていましたので,苦しいことも乗り切れたのだと思います。もちろん,勉強したくない,遊びたいと思うときはたくさんありました。しかし,それに打ち勝つことで強い精神力を身につけようとしたのです。どんな困難にも負けない強い精神力は,いずれ勉強のほかにも必ず役に立つと信じています。
 
 調理師になるには,もちろん試験もあります。その試験に合格するために勉強するということもあるでしょう。でも音楽や美術,技術・家庭,また部活動でも,試験のためではなく,将来の役に立つと思います。人間としての教養を深めることで,地域のいろいろな人たち,若い人からお年寄りまで,年齢や性別,国籍に関わらず,親しみやすい調理師になれるのだと思っているからです。
 
 勉強に限りはありません。あるのは苦労と努力だけです。自分の能力を伸ばし,また,自分を成長させる。いわば自分を大きくしていくことが勉強の本来の目的だと私自身は考えます。なぜ,勉強するのか。なぜ,高校へ行くのか。考えてみることが大切です。
 

できる子は勉強時間以外も学んでいる! 

「合格への絆」10月号より、記事の一部を紹介します。


できる子は勉強時間以外も学んでいる! 
 
 「なぜ同じ授業を受けていて差がつくのか?」
 これに対して,「やっぱり頭の構造が違う」「遺伝だ」などと言う人もいるでしょう。もちろん,そうした可能性も否定できません。実際,一部の天才的な子はそうかもしれません。しかしそのような子が存在する確率は非常に小さいはずです。
 結論から言うと,「できる子は,勉強時間以外も学んでいる」ということです。彼らは始終「学んで」いるのです。ですから,表面的な授業時間で差がついているのではないのです。「学び」のタイプは大きく3つあります。
 
①授業を受けても学んでいない人
 いすには座って,黒板に書いてあることを書き写す“作業”を黙々と行う。そして,たまに先生の雑談が入ると聞く耳スイッチが入り,よく話を聞く。そしてまた授業に入ると,再び上の空になってただ書記をしているだけ。これが多くの人が経験していることではないでしょうか。子どもたちにとって,非常に多くの時間を占める授業時間をこのように過ごしていたのでは,話になりません。
 
②授業だけが学びの人(勉強の場だけが学びの人)
 これは,授業をしっかりと受けて学び,さらに家で予習復習や宿題など,勉強する時間の中ではしっかりと学んでいる人をいいます。このような生徒は,学校では比較的上位の成績がとれます。
 
③寝ているとき以外,すべて学びの人
 このような人が最もできる人です。本当にそんな人がいるのかと思われるかもしれませんが,います。彼らは,人と話をするときも,テレビを見ているときも,街を歩いているときも,感じ,考え,自分の意見を持つ習慣を持っています。それによって教養が深まり,考える力が深まり,記述力や小論文といった自己表現力もつくのです。この③のタイプの人は,非常に多くの気づきを得て,そこから考えたりするのです。ですから得られている情報量が①や②のタイプの人とはまったく異なります。
 
③のタイプになる方法は?
 では,どうすればこのタイプ③になれるのかということです。そのためには,「気づく楽しさ」「知る楽しさ」「考える楽しさ」を知る必要があります。
 その方法として,「人と違う意見を持つ」ということが考えられます。「別の見方がないか?」「別の意見がないか?」などと考えてみることです。このような方法によって,人は自然と「気づき→知り→考える」ようになっていきます。これを習慣にすると,頭の構造が変わってきます。
 

新教研テストの結果!

夏期講習の最後日に行った新教研テストの結果表が返って来ました。
テストを受けた生徒たちだけでなく、指導していた私たち講師陣も、テストの結果は非常に気になるものです。

期待感ドキドキで結果表を見ると・・・
実に8割近い生徒が、前回よりも偏差値が上がっていました!

偏差値を上げるためには、それ相応の努力が必要なことを前にブログで書きました。http://www.kizuna21.com/blog/entry/post-64/
たくさんの子が、この夏休みがんばったんだとうれしく思います。
結果を少しまとめてみました。

今年の春(4月)から夏(8月)の間で、上がった成績トップ3 ( )の数字は偏差値
1位 偏差値 8UP! 中1生(45)→(53) 
2位 偏差値 5UP! 中2生(46)→(51)
3位 偏差値 4UP! 中1生(55)→(59)
3位 偏差値 4UP! 中2生(57)→(61)
3位 偏差値 4UP! 中2生(50)→(54)
3位 偏差値 4UP! 中3生(46)→(50)


もう一つ。

今までから今年の夏(8月)の間で、上がった成績トップ5 ( )の数字は偏差値
1位 偏差値11UP! 中2・8月(33)→ 中3・8月(44)
1位 偏差値11UP! 中1・1月(43)→ 中2・8月(54)
2位 偏差値 9UP! 中3・7月(49)→ 中3・8月(58)
2位 偏差値 9UP! 中2・4月(37)→ 中3・8月(46)
2位 偏差値 9UP! 中2・4月(41)→ 中3・8月(50)
3位 偏差値 8UP! 中2・8月(36)→ 中3・8月(44)
3位 偏差値 8UP! 中1・4月(45)→ 中1・8月(53)
4位 偏差値 7UP! 中2・8月(34)→ 中3・8月(41)
4位 偏差値 7UP! 中1・8月(40)→ 中2・8月(47)
4位 偏差値 7UP! 中1・1月(56)→ 中2・8月(63)
5位 偏差値 6UP! 中1・1月(59)→ 中2・8月(65)

学習塾絆 稲見

間違いはチャンス

今週中学校では期末テストが行われました。中学生の皆さん、思うような点数は取れましたか?
今回のテストで間違えた問題は、夏休み前に必ず見直しをしましょう。

今日は、間違えた問題をできるようにするための方法を一つ紹介します。
その方法はズバリ「間違えた問題の答えを書かないこと」です。

中学校では各科目ごとにワークがあり、テスト前にはワークの試験範囲を終わらせて学校に提出する、という流れになっていますね。
ワークを初めて解いた時に、すべての問題が正解することはあまりないと思います。
ただ、間違えた問題こそチャンスで、その問題にしっかり✔を入れておきます。この時、答えはワークに書きません

なぜ答えを書かないかというと、答えを書くことで覚えた気になってしまうからです。

✔が入っている問題は、テストの日までに何度も見て、答えが何かを見る度に思い出しましょう
思い出せない時は面倒でも、答え・解説を見ましょう。

問題を見て答えがすぐ言えるようになったら、仕上げに答えを書き入れましょう。
ただこれは学校で答えを書きなさいという指示がある場合だけで、答えを入れなくてもよいならそのままでいいです。

絆で使っているワークは答えを入れる必要はないので、このやり方が気に入った子はぜひ授業でやってみて下さい。
学習塾絆 稲見

小学校1年生の問題です

下の画像は小学校1年生の問題です。
長男が家に持ち帰ってきたプリントを見て、おもしろいと思ったので載せてみました。

算数問題.jpg

答えは6番目です。
これを一発で正解できる子は、見た目に惑わされずに論理的に物事を考えられる子ですね!
うちの子は残念でしたcoldsweats01

学習塾絆 稲見

県立入試の平均点

今年の茨城県の県立入試の平均点は268点だったようです。前年より20点程低い点数でした。
2020年の教育改革に向けて問題傾向が変わってきているようです。

数学ではこれまで出題されていなかった作図の問題が出ました。方程式の文章題では答えではなく途中式を作る問題が出ました。
理科では知識があれば解けるような問題、こう聞かれたらこう答えるというような言わばパターン化している問題から、そこに「考える」ことを入れないと解けない問題に変わってきています。

これからの入試制度に立ち向かうために、日頃の学習で大事になることは、常に「考える」ことをやめないこと。
自分もそれを意識しながら子供たちに授業をしていきたいと思います。

学習塾絆 稲見

言葉って難しい

携帯で見た記事の中に、言葉に関するおもしろいものがありました。

問題です。
「5人の男の子がいて、身長はそれぞれ、A君150㎝、B君155㎝、C君160㎝、D君165㎝、E君170㎝です。この5人の中で、C君の次に背が高い人はだれですか?」

この問題、みなさんはだれと答えますか?

私は直感的にD君と思いました。
回答の集計表を見ると、D君と答えた人が50%、B君と答えた人が33%、どちらにも解釈できるが13%、日本後がおかしい、解釈できないが4%でした。

この集計表を見たとき、私は「あれ?なんでこんなにB君が多いんだ?」と思いました。
でもよくよく考えてみると、「あれ?これB君じゃね?」と思い始め、しばらく問題を見返しつつ考え込んでしまいました。

この問題に正解はなく、アンケートみたいなものと書かれていました。
「次」の解釈の仕方でB君にもD君にも考えられてしまいますからね。

言葉って難しいですね~

学習塾絆 稲見

連休明けの変化

IMG_1602 (1).jpg

メガネ変えました~eyeglass
一目見た瞬間に気付いた子、女子力高い!

学習塾絆 稲見

<<前のページへ12345678910

100件以降の記事はアーカイブからご覧いただけます。

このページのトップへ